Водный раствор хлористого водорода назвали соляной кислотой потому, что издавна его получали из поваренной соли, действуя на нее серной кислотой. Этот, так называемый сульфатный, способ производства соляной кислоты долгое время был единственным. Затем стали получать синтетический хлористый водород из хлора и водорода. Кроме того, значительные количества хлористого водорода получают в качестве побочного продукта при хлорировании органических веществ и других продуктов.

Таким образом, в промышленности соляную кислоту получают следующими способами:

  • - сульфатным;
  • - синтетическим;
  • - из абгазов (побочных газов) ряда процессов.

Во всех случаях производство соляной кислоты (реактивной, полученной сульфатным способом, синтетической, абгазной) состоит из двух стадий:

  • 1) получения хлористого водорода
  • 2) поглощения (абсорбции) хлористого водорода водой.

В зависимости от способа отвода теплоты абсорбции, которая достигает 72,8 кДж/моль процессы разделяются на изотермические (при постоянной температуре), адиабатические (без теплообмена с окружающей средой) и комбинированные.

Сульфатный метод: основан на взаимодействии хлорида натрия с серной кислотой Н 2 SO 4 (92-93%) при 500-550°С.

2NaCl + H 2 SO 4 > Na 2 SO 4 + 2HCl

Менее концентрированную серную кислоту не применяют, так как в этом случае хлористый водород был бы чрезмерно разбавлен парами воды, что затруднило бы получение концентрированной соляной кислоты. В технологическом процессе предпочтительнее применение крупнозернистой выварочной соли вследствие ее пористости? она легко пропитывается кислотой с образованием однородной массы. Однако выварочная соль содержит переменное количество влаги, что затрудняет дозировку сырья и регулирование температурного режима печей. Каменная соль характеризуется постоянной влажностью, но она более загрязнена примесями CaSO 4 , Fe 2 O 3 и другими, переходящими в сульфат натрия. Помимо этого, применение каменной соли связано с необходимостью ее измельчения и более интенсивного перемешивания с серной кислотой.

Реакционные газы, отходящие от муфельных печей, содержат от 50-65% хлороводорода, а газы от реакторов с кипящим слоем до 5% НСl. В настоящее время предложено заменить серную кислоту на смесь SO 2 и О 2 c использованием в качестве катализатора Fe 2 O 3 и проведением процесса при температуре 540°С.

Синтез хлористого водорода из элементов дает концентрированный хлористоводородный газ (содержащий 80-90% и больше HCl), легко поддающийся сжижению, а поглощение его дистиллированной водой позволяет получать чистую реактивную кислоту, концентрация которой при необходимости может достигать 38%.

В основе прямого синтеза соляной кислоты лежит цепная реакция горения:

Н 2 + Сl 2 - 2НС1 + 184,7 кДж.

Реакция инициируется светом, влагой, твердыми пористыми веществами (древесный уголь, губчатая платина) и некоторыми минеральными веществами (кварц, глина). Абсолютно сухие хлор и водород не взаимодействуют между собой. Присутствие следов влаги ускоряет реакцию столь интенсивно, что она может произойти со взрывом. В производственных установках осуществляется спокойное, не взрывное горение водорода в токе хлора. Водород подается с избытком в 5-10%, что позволяет полностью использовать более ценный хлор и получить незагрязненную хлором соляную кислоту.

Сжигание смеси хлора и водорода производится в печах различных конструкций, представляющих собой небольшие камеры из огнеупорного кирпича, плавленого кварца, графита или металла. Наиболее современным материалом, предотвращающий загрязнение продукта является графит, импрегнированный фенолоформальдегидными смолами. Для предотвращения взрывного характера горения реагенты смешивают непосредственно в факеле пламени горелки. В верхней зоне камер сжигания устанавливают теплообменники для охлаждения реакционных газов до 150-160°С. Мощность современных графитовых печей достигает 65 т/сут. (в пересчете на соляную кислоту содержащую 35% НСl).

Получение соляной кислоты из хлора и водорода? основной способ промышленного производства данного продукта.

В случае дефицита водорода применяют различные модификации процесса. Например, пропускают смесь Сl 2 с водяным паром через слой пористого раскаленного угля:

2С1 2 + 2Н 2 О + С > 4НС1 + СО 2 + 288,9 кДж.

Температура процесса составляет 1000-1600°С, зависит от типа угля и наличия в нем примесей, являющихся катализаторами, например Fe 2 O 3.

Перспективным является также использование смеси СО с парами воды:

СО + Н 2 О + Сl 2 > 2НС1 + СО 2 .

Значительное количество соляной кислоты в настоящее время получают из абгазного хлороводорода НСl, образующегося при хлорировании и дегидрохлорировании органических соединений, пиролизе хлорорганических отходов, хлоридов металлов, получении калийных нехлорированных удобрений и др. Абгазные газы содержат различные количества хлороводорода, инертные примеси (N 2 , Н 2 , СН 4), малорастворимые в воде органические вещества (хлорбензол, хлорметаны), водорастворимые вещества (уксусная кислота, хлораль), кислые примеси (Cl 2 , HF, О 2) и воду. При содержании инертных примесей менее 40%, является целесообразным применение изотермической абсорбции НСl в абгазных газах. Наиболее перспективными являются пленочные абсорберы, позволяющие извлекать из исходного абгаза от 65% до 85% НСl.

В российской промышленности для получения соляной кислоты наиболее широко применяют схемы адиабатической абсорбции. Абгазные газы вводят в нижнюю часть абсорбера, а воду (или разбавленную соляную кислоту) - противотоком в верхнюю. Соляная кислота нагревается до температуры кипения благодаря теплоте растворения НСl. Зависимость изменения температуры абсорбции и концентрации НСl показана на рисунке 1.

Температура абсорбции определяется температурой кипения кислоты соответствующей концентрации, максимальная температура кипения азеотропной смеси находится около 110°С.

Рис. 1.

Типовая схема адиабатической абсорбции НСl из абгазов, образующихся при хлорировании (например, при получении хлорбензола), представлена на рисунке 2. Хлороводород поглощается в абсорбере 1, а остатки малорастворимых в воде органических веществ отделяют от воды после конденсации в аппарате 2, доочищают в хвостовой колонне 4 и сепараторах 3, 5 и получают товарную соляную кислоту.

Рис. 2: Схема типовой адиабатической абсорбции соляной кислоты из абгазов. 1 ? адиабатический абсорбер; 2 ? конденсатор; 3, 5 ? сепараторы; 4 ? хвостовая колонна; 6 ? сборник органической фазы; 7 ? сборник водной фазы; 8, 12 ? насосы; 9 ? отдувочная колонна; 10 ? теплообменник; 11 ? сборник товарной кислоты

Получение соляной кислоты из абгазных газов с использованием комбинированной схемы абсорбции представлено в виде типовой схемы на рисунке 3. В колонне адиабатической абсорбции получают соляную кислоту пониженной концентрации, но свободную от органических примесей. Кислоту с повышенной концентрацией НС1 производят в колонне изотермической абсорбции при пониженных температурах. Степень извлечения HCl из абгазов при использовании в качестве абсорбентов разбавленных кислот составляет 95- 99%. При использовании в качестве абсорбента чистой воды степень извлечения почти полная.


Рис. 3: Схема типовой комбинированной абсорбции соляной кислоты из абгазных газов 1 - колонна адиабатической абсорбции; 2 - конденсатор; 3 - отделитель газов; 4 - сепаратор; 5 - холодильник; 6, 9 - сборники кислоты; 7 - насосы; 8 - изотермический абсорбер.

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ

Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 . Далее рассмотрим отношение различных металлов к перечисленным кислотам.

Соляная кислота ( HCl )

Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl . Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:

HCl H + + Cl -

Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя , окисляя металлы, расположенные в ряду активности левее водорода . Взаимодействие протекает по схеме:

Me + HCl соль + H 2

При этом соль представляет собой хлорид металла (NiCl 2 , CaCl 2 , AlCl 3 ), в котором число хлорид-ионов соответствует степени окисления металла.

Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления :

Fe 0 Fe 2+

Co 0 Co 2+

Ni 0 Ni 2+

Cr 0 Cr 2+

Mn 0 Mn 2+ и др .

Пример:

2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

2│ Al 0 – 3 e - → Al 3+ - окисление

3│2 H + + 2 e - → H 2 – восстановление

Соляная кислота пассивирует свинец ( Pb ). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца (II ), который защищает металл от дальнейшего воздействия кислоты:

Pb + 2 HCl → PbCl 2 ↓ + H 2

Серная кислота ( H 2 SO 4 )

В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.

Разбавленная серная кислота

В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:

H 2 SO 4 H + + HSO 4 -

HSO 4 - H + + SO 4 2-

Образующиеся ионы Н + выполняют функцию окислителя .

Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).

Химическая реакция протекает по схеме:

Ме + H 2 SO 4( разб .) соль + H 2

Пример :

2 Al + 3 H 2 SO 4( разб .) → Al 2 (SO 4) 3 + 3 H 2

1│2Al 0 – 6e - → 2Al 3+ - окисление

3│2 H + + 2 e - → H 2 – восстановление

Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления :

Fe 0 Fe 2+

Co 0 Co 2+

Ni 0 Ni 2+

Cr 0 Cr 2+

Mn 0 Mn 2+ и др .

Свинец ( Pb ) не растворяется в серной кислоте (если ее концентрация ниже 80%) , так как образующаяся соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Концентрированная серная кислота

В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера , находящаяся в высшей степени окисления (S +6 ). Концентрированная H 2 SO 4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO 4 2- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы .

Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:

Me + H 2 SO 4 (конц.) соль + вода + продукт восстановления H 2 SO 4

Продуктами восстановления серной кислоты могут быть следующие соединения серы:

Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H 2 S , S и SO 2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла : чем выше активность, тем глубже процесс восстановления серы в серной кислоте.

Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:

Алюминий (Al ) и железо (Fe ) не реагируют с холодной концентрированной H 2 SO 4 , покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.

Ag , Au , Ru , Os , Rh , Ir , Pt не реагируют с серной кислотой.

Концентрированная серная кислота является сильным окислителем , поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления , чем в случае с разбавленным раствором кислоты:

Fe 0 Fe 3+ ,

Cr 0 Cr 3+ ,

Mn 0 Mn 4+ ,

Sn 0 Sn 4+

Свинец ( Pb ) окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца Pb ( HSO 4 ) 2 .

Примеры:

Активный металл

8 A1 + 15 H 2 SO 4( конц .) →4A1 2 (SO 4) 3 + 12H 2 O + 3H 2 S

4│2 Al 0 – 6 e - → 2 Al 3+ - окисление

3│ S 6+ + 8 e → S 2- – восстановление

Металл средней активности

2 Cr + 4 H 2 SO 4(конц.) → Cr 2 (SO 4) 3 + 4 H 2 O + S

1│ 2Cr 0 – 6e →2Cr 3+ - окисление

1│ S 6+ + 6 e → S 0 - восстановление

Металл малоактивный

2Bi + 6H 2 SO 4( конц .) → Bi 2 (SO 4) 3 + 6H 2 O + 3SO 2

1│ 2Bi 0 – 6e → 2Bi 3+ – окисление

3│ S 6+ + 2 e → S 4+ - восстановление

Азотная кислота ( HNO 3 )

Особенностью азотной кислоты является то, что азот, входящий в состав NO 3 - имеет высшую степень окисления +5 и поэтому обладает сильными окислительными свойствами. Максимальное значение электродного потенциала для нитрат-иона равно 0,96 В, поэтому азотная кислота – более сильный окислитель, чем серная. Роль окислителя в реакциях взаимодействия металлов с азотной кислотой выполняет N 5+ . Следовательно, водород H 2 никогда не выделяется при взаимодействии металлов с азотной кислотой (независимо от концентрации ). Процесс протекает по схеме:

Me + HNO 3 соль + вода + продукт восстановления HNO 3

Продукты восстановления HNO 3 :

Обычно при взаимодействии азотной кислоты с металлом образуется смесь продуктов восстановления, но как правило, один из них является преобладающим. Какой из продуктов будет основным, зависит от концентрации кислоты и активности металла.

Концентрированная азотная кислота

Концентрированным считают раствор кислоты плотностью ρ > 1,25 кг/м 3 , что соответствует
концентрации > 40%. Независимо от активности металла реакция взаимодействия с
HNO 3 (конц.) протекает по схеме:

Me + HNO 3 (конц.) соль + вода + NO 2

С концентрированной азотной кислотой не взаимодействуют благородные металлы (Au , Ru , Os , Rh , Ir , Pt ), а ряд металлов (Al , Ti , Cr , Fe , Co , Ni ) при низкой температуре пассивируются концентрированной азотной кислотой. Реакция возможна при повышении температуры, она протекает по схеме, представленной выше.

Примеры

Активный металл

Al + 6 HNO 3( конц .) → Al (NO 3 ) 3 + 3 H 2 O + 3 NO 2

1│ Al 0 – 3 e → Al 3+ - окисление

3│ N 5+ + e → N 4+ - восстановление

Металл средней активности

Fe + 6 HNO 3(конц.) → Fe(NO 3) 3 + 3H 2 O + 3NO

1│ Fe 0 – 3e → Fe 3+ - окисление

3│ N 5+ + e → N 4+ - восстановление

Металл малоактивный

Ag + 2HNO 3( конц .) → AgNO 3 + H 2 O + NO 2

1│ Ag 0 – e → Ag + - окисление

1│ N 5+ + e → N 4+ - восстановление

Разбавленная азотная кислота

Продукт восстановления азотной кислоты в разбавленном растворе зависит от активности металла , участвующего в реакции:


Примеры:

Активный металл

8 Al + 30 HNO 3(разб.) → 8Al(NO 3) 3 + 9H 2 O + 3NH 4 NO 3

8│ Al 0 – 3e → Al 3+ - окисление

3│ N 5+ + 8 e → N 3- - восстановление

Выделяющийся в процессе восстановления азотной кислоты аммиак сразу взаимодействует с избытком азотной кислоты, образуя соль – нитрат аммония NH 4 NO 3 :

NH 3 + HNO 3 → NH 4 NO 3.

Металл средней активности

10Cr + 36HNO 3( разб .) → 10Cr(NO 3) 3 + 18H 2 O + 3N 2

10│ Cr 0 – 3 e → Cr 3+ - окисление

3│ 2 N 5+ + 10 e → N 2 0 - восстановление

Кроме молекулярного азота (N 2 ) при взаимодействии металлов средней активности с разбавленной азотной кислотой образуется в равном количестве оксид азота (I ) – N 2 O . В уравнении реакции нужно писать одно из этих веществ .

Металл малоактивный

3Ag + 4HNO 3( разб .) → 3AgNO 3 + 2H 2 O + NO

3│ Ag 0 – e → Ag + - окисление

1│ N 5+ + 3 e → N 2+ - восстановление

«Царская водка»

«Царская водка» (ранее кислоты называли водками) представляет собой смесь одного объема азотной кислоты и трех-четырех объемов концентрированной соляной кислоты, обладающую очень высокой окислительной активностью. Такая смесь способна растворять некоторые малоактивные металлы, не взаимодействующие с азотной кислотой. Среди них и «царь металлов» - золото. Такое действие «царской водки» объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (III ), или хлорида нитрозила – NOCl :

HNO 3 + 3 HCl → Cl 2 + 2 H 2 O + NOCl

2 NOCl → 2 NO + Cl 2

Хлор в момент выделения состоит из атомов. Атомарный хлор является сильнейшим окислителем, что и позволяет «царской водке» воздействовать даже на самые инертные «благородные металлы».

Реакции окисления золота и платины протекают согласно следующим уравнениям:

Au + HNO 3 + 4 HCl → H + NO + 2H 2 O

3Pt + 4HNO 3 + 18HCl → 3H 2 + 4NO + 8H 2 O

На Ru , Os , Rh и Ir «царская водка» не действует.

Е.А. Нуднoва, М.В. Андрюxова


Соляная кислота - неорганическое вещество, одноосновная кислота, одна из самых сильных кислот. Используются также другие названия: хлористый водород, кислота хлороводородная, кислота хлористоводородная.

Свойства

Кислота в чистом виде представляет собой жидкость без цвета и запаха. Техническая кислота обычно содержит примеси, которые придают ей слегка желтоватый оттенок. Соляную кислоту часто называют «дымящей», так как она выделяет пары хлороводорода, вступающие в реакцию с влагой воздуха и образующие кислотный туман.

Очень хорошо растворяется в воде. При комнатной температуре максимально возможное по массе содержание хлороводорода -38%. Кислота концентрации большей 24% считается концентрированной.

Хлористоводородная кислота активно вступает в реакции с металлами, оксидами, гидроксидами, образуя соли - хлориды. HCl взаимодействует с солями более слабых кислот; с сильными окислителями и аммиаком .

Для определения соляной кислоты или хлоридов используют реакцию с нитратом серебра AgNO3, в результате которой выпадает белый творожистый осадок.

Техника безопасности

Вещество очень едкое, разъедает кожу, органические материалы, металлы и их окислы. На воздухе выделяет пары хлороводорода, которые вызывают удушье, ожоги кожи, слизистой глаз и носа, повреждают органы дыхания, разрушают зубы. Соляная кислота относится к веществам 2 степени опасности (высокоопасным), ПДК реактива в воздухе составляет 0,005 мг/л. Работать с хлористым водородом можно только в фильтрующих противогазах и защитной одежде , включая резиновые перчатки, фартук, спецобувь.

При разливе кислоты ее смывают большим количеством воды или нейтрализуют щелочным растворами. Пострадавших от кислоты следует вынести из опасной зоны, промыть кожу и глаза водой или содовым раствором, вызвать врача.

Перевозить и хранить хим реактив допускается в стеклянной, пластиковой таре , а также в металлической таре, покрытой изнутри резиновым слоем. Тара должна герметично закрываться.

Получение

В промышленных масштабах соляную кислоту получают из газообразного хлороводорода (HCl). Сам хлороводород производится двумя основными способами:
- экзотермической реакцией хлора и водорода - таким образом получают реактив высокой чистоты, например, для пищевой промышленности и фармацевтики;
- из сопутствующих промышленных газов - кислота на основе такого HCl называется абгазной.

Это любопытно

Именно соляной кислоте природа «поручила» процесс расщепления пищи в организме. Концентрация кислоты в желудке составляет всего 0,4%, но этого оказывается достаточно, чтобы за неделю переварить бритвенное лезвие!

Кислота вырабатывается клетками самого желудка, который защищен от этой агрессивной субстанции слизистой оболочкой. Тем не менее, его поверхность обновляется ежедневно, чтобы восстановить поврежденные участки. Кроме участия в процессе переваривания пищи, кислота выполняет еще и защитную функцию, убивая болезнетворные микроорганизмы, попадающие в организм через желудок.

Применение

В медицине и фармацевтике - для восстановления кислотности желудочного сока при его недостаточности; при анемии для улучшения всасываемости железосодержащих лекарств.
- В пищепроме это пищевая добавка, регулятор кислотности Е507, а также ингредиент сельтерской (содовой) воды. Используется при изготовлении фруктозы, желатина, лимонной кислоты.
- В химической промышленности - основа для получения хлора, соды, глутамината натрия, хлоридов металлов, например, хлорида цинка, хлорида марганца, хлорида железа; синтеза хлорорганических веществ; катализатор в органических синтезах.
- Больше всего производимой в мире хлористоводородной кислоты расходуется в металлургии для очистки заготовок от окислов. Для этих целей применяется ингибированная техническая кислота, в состав которой введены специальные ингибиторы (замедлители) реакции, благодаря чему реактив растворяет окислы, но не сам металл. Также соляной кислотой травят металлы; очищают их перед лужением, пайкой, гальванированием.
- Обрабатывают кожу перед дублением.
- В добывающей отрасли востребована для очистки буровых скважин от отложений, для обработки руд и горных пластов.
- В лабораторной практике хлористоводородная кислота используется как популярный реактив для аналитических исследований, для очистки сосудов от трудноудаляемых загрязнений.
- Применяется в каучуковой, целлюлозно-бумажной индустрии, в черной металлургии; для очистки котлов, труб, оборудования от сложных отложений, накипи, ржавчины; для очистки керамических и металлических изделий.

Как кислоты. Программа образования предусматривает запоминание учениками названий и формул шести представителей этой группы. И, просматривая предоставленную учебником таблицу, вы замечаете в списке кислот ту, которая стоит первой и заинтересовала вас в первую очередь, - соляную. Увы, на занятиях в школе ни свойства, ни любая другая информация о ней не изучается. Поэтому жаждущие получить знания вне школьной программы ищут дополнительные сведения во всяческих источниках. Но частенько многие не находят нужную информацию. И поэтому тема сегодняшней статьи посвящается именно данной кислоте.

Определение

Соляная кислота является сильной одноосновной кислотой. В некоторых источниках ее могут называть хлоро- и хлористоводородной, а также хлористым водородом.

Физические свойства

Она представляет собой бесцветную и дымящуюся на воздухе едкую жидкость (фото справа). Однако техническая кислота из-за наличия в ней железа, хлора и других добавок имеет желтоватый цвет. Самая большая ее концентрация при температуре 20 о С равняется 38%. Плотность соляной кислоты с такими параметрам равна 1,19г/см 3 . Но это соединение в разной степени насыщенности имеет совершенно разные данные. При уменьшении концентрации происходит снижение числового значения молярности, вязкости и температуры плавления, однако повышается удельная теплоемкость и температура кипения. Затвердевание соляной кислоты любой концентрации дает различные кристаллогидраты.

Химические свойства

Все металлы, которые стоят до водорода в электрохимическом ряду их напряжения, могут взаимодействовать с этим соединением, образуя соли и выделяя газообразный водород. Если их заменить оксидами металлов, то продуктами реакции станут растворимая соль и вода. Такой же эффект будет и при взаимодействии соляной кислоты с гидроксидами. Если же к ней добавить любую соль металлов (например, карбонат натрия), остаток которой был взят из более слабой кислоты (угольной), то образуются хлорид этого металла (натрия), вода и газ, соответствующий кислотному остатку (в данном случае - углекислый).

Получение

Обсуждаемое сейчас соединение образуется, когда в воде растворяют газообразный хлороводород, который можно получить, сжигая водород в хлоре. Соляная кислота, которую получили при помощи такого способа, носит название синтетической. Также источником для добывания этого вещества могут служить абгазы. И такую соляную кислоту будут называть абгазной. В последнее время уровень производства соляной кислоты с помощью этого метода гораздо выше, чем ее получение синтетическим способом, хотя последний дает соединение в более чистом виде. Это все пути его добывания в промышленности. Однако в лабораториях соляную кислоту получают тремя способами (первые два отличаются только температурой и продуктами реакции) при помощи различных видов взаимодействия химических веществ, таких как:

  1. Воздействие насыщенной серной кислоты на хлорид натрия при температуре 150 о С.
  2. Взаимодействие приведенных выше веществ в условиях с температурой 550 о С и выше.
  3. Гидролиз хлоридов алюминия или магния.

Применение

Гидрометаллургия и гальванопластика не могут обойтись без использования соляной кислоты, где она нужна, чтобы очищать поверхность металлов при лужении и паянии и получать хлориды марганца, железа, цинка и других металлов. В пищевой промышленности это соединение знают как пищевую добавку E507 - там это регулятор кислотности, необходимый для того, чтобы изготовить сельтерскую (содовую) воду. Концентрированная соляная кислота также находится в желудочном соке любого человека и помогает переваривать пищу. Во время данного процесса ее степень насыщенности уменьшается, т.к. этот состав разбавляется едой. Однако при продолжительном голодании концентрация соляной кислоты в желудке понемногу увеличивается. А так как данное соединение очень едкое, это может привести к язве желудка.

Заключение

Соляная кислота может быть как полезной, так и вредной для человека. Ее попадание на кожу приводит к появлению сильных химических ожогов, а пары данного соединения раздражают дыхательные пути и глаза. Но если обращаться с этим веществом осторожно, оно может не раз пригодиться в

Получение. Соляную кислоту получают путем растворения хлороводорода в воде.

Обратите внимание на прибор изображенный на рисунке слева. Его используют для получения соляной кислоты. Во время процесса получения соляной кислоты, следят за газоотводной трубкой, она должна находиться вблизи уровня воды, а не быть погруженной в нее. Если за этим не следить, то из-за большой растворимости хлороводорода вода попадет в пробирку с серной кислотой и может произойти взрыв.

В промышленности соляную кислоту обычно получают путем сжигания водорода в хлоре и растворении продукта реакции в воде.

Физические свойства. Растворяя хлороводород в воде, можно получить даже 40% раствор соляной кислоты с плотностью 1,19 г/см 3 . Однако имеющаяся в продаже концентрированная соляная кислота содержит около 0,37 массовых долей, или около 37% хлороводорода. Плотность данного раствора составляет примерно 1,19 г/см 3 . Пр разбавлении кислоты плотность ее раствора уменьшается.

Концентрированная соляная кислота является бесценным раствором, сильно дымящая во влажном воздухе, обладающая резким запахом вследствие выделения хлороводорода.

Химические свойства. Соляная кислота обладает рядом общих свойств, которые характерны большинству кислот. Помимо этого, она обладает некоторыми специфическими свойствами.

Свойства HCL, общие с другими кислотами: 1) Изменение окраски индикаторов 2) взаимодействие с металлами 2HCL + Zn → ZnCL 2 + H 2 3) Взаимодействие с основными и амфотерными оксидами: 2HCL + CaO → CaCl 2 + H 2 O; 2HCL + ZnO → ZnHCL 2 + H 2 O 4) Взаимодействие с основаниями: 2HCL + Cu (OH) 2 → CuCl 2 + 2H 2 O 5) Взаимодействие с солями: 2HCL + CaCO 3 → H 2 O + CO 2 + CaCL 2

Специфические свойства HCL: 1) Взаимодействие с нитратом серебра (нитрат серебра является реактивом на соляную кислоту и ее соли); выпадет осадок белого цвета, который не растворяется в воде, ни в кислотах: HCL + AgNO3 → AgCL↓ + HNO 3 2) Взаимодействие с окислителями (MnO 2 , KMnO, KCLO 3 и др.): 6HCL + KCLO 3 → KCL +3H 2 O + 3CL 2

Применение. Огромное количество соляной кислоты расходуется для удаления оксидов железа перед покрытием изделий из этого металла другими металлами (оловом, хромом, никелем). Для того чтобы соляная кислота реагировала только с оксидами, но не с металлом, к ней добавляют особые вещества, которые называются ингибиторами. Ингибиторы – вещества замедляющие реакции.

Соляная кислота применяется для получения различных хлоридов. Ее используют для получения хлора. Очень часто, раствор соляной кислоты прописывают больным с пониженной кислотностью желудочного сока. Соляная кислота находится у каждого в организме, она входит в состав желудочного сока, который необходим для пищеварения.

В пищевой промышленности соляная кислота применяется только в виде раствора. Она используется для регулирования кислотности при производстве лимонной кислоты, желатина или фруктозы (Е 507).

Не стоит забывать, что соляная кислота опасна для кожи. Еще большую опасность она представляет для глаз. Воздействуя на человека, она может вызвать разрушение зубов, раздражение слизистых оболочек, удушье.

Помимо этого, соляная кислота активно применяется в гальванопластике и гидрометаллургии (удаление накипи, ржавчины, обработка кожи, химреактивы, в качестве растворителя породы при добыче нефти, при производстве каучуков, глутамината натрия, соды, Сl 2). Соляная кислота используется для регенерации Сl 2 , в органическом синтезе (для получения винилхлорида, алкилхлоридов и т.д.) Она может использоваться в качестве катализатора при получении дифенилолпропана, алкилирование бензола.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.