Наши старания описать реальность — не более, чем игра в кости с попыткой предсказать необходимый результат? Джеймс Оуэн Уэзералл, профессор логики и философии науки университета Ирвин, поразмышлял на страницах Nautil.us о загадках квантовой физики, проблеме квантового состояния и о том, насколько оно зависит от наших действий, знаний и субъективного восприятия реальности, и почему, предсказывая разные вероятности, мы все оказываемся правы.

Физикам хорошо известно, как применять квантовую теорию, – ваш телефон и компьютер тому доказательства. Но знание о том, как что-то использовать, далеко от полного понимания мира, описываемого теорией, и даже от того, что означают различные математические инструменты, которые применяют ученые. Одним из таких математических инструментов, о статусе которого физики уже долго спорят, является «квантовое состояние»Квантовое состояние - любое возможное состояние, в котором может находиться квантовая система. В данном случае под «квантовым состоянием» также следует понимать все потенциальные вероятности выпадения того или иного значения при игре в «кости». — Прим. ред. .

Одной из самых поразительных особенностей квантовой теории является то, что ее предсказания вероятностны. Если вы проводите эксперимент в лаборатории и используете квантовую теорию для предсказания результатов различных измерений, в лучшем случае теория может только предсказать вероятность результата: например, 50% за предсказанный результат и 50% за то, что он будет иным. Роль квантового состояния – определить вероятность результатов. Если квантовое состояние известно, вы можете рассчитать вероятность получения любого возможного результата для любого возможного эксперимента.

Представляет ли квантовое состояние объективный аспект реальности или является всего лишь способом характеризовать нас, то есть то, что человек знает о реальности? Этот вопрос активно обсуждался в самом начале изучения квантовой теории и недавно вновь стал актуальным, вдохновив на новые теоретические подсчеты и последовавшие за ними экспериментальные проверки.

«Если изменить лишь только ваши знания, вещи перестанут казаться странными».

Для того чтобы понять, почему квантовое состояние иллюстрирует чьи-то знания, представьте случай, в котором вы вычисляете вероятность. Прежде чем ваш друг бросит игральные кости, вы предполагаете, какой стороной они упадут. Если ваш друг бросает обычную шестигранную кость, вероятность того, что ваше предположение окажется верным, будет равна примерно 17% (одна шестая), что бы вы ни загадали. В этом случае вероятность говорит кое-что о вас, а именно о том, что вы знаете об игральном кубике. Предположим, вы повернулись спиной во время броска, и ваш друг видит результат – пусть это будет шесть, но вам этот результат неизвестен. И пока вы не обернетесь, исход броска остается неопределенным, даже несмотря на то, что вашему другу он известен. Вероятность, представляющая человеческую неуверенность, даже если реальность определена, называется эпистемной , от греческого слова «знание».

Это означает, что вы и ваш друг могли определить разные вероятности, при этом ни один из вас не ошибется. Вы скажете, что вероятность выпадения шестерки на кубике равна 17%, а ваш друг, уже знакомый с результатом, назовет ее равной 100%. Это связано с тем, что вам и другу известны разные вещи, и названные вами вероятности представляют разную степень вашего знания. Единственным неверным предсказанием было бы такое, которое исключает возможность выпадения шестерки вообще.

В течение последних пятнадцати лет физиков волновал вопрос, может ли квантовое состояние оказаться эпистемным таким же образом. Предположим, некоторое состояние материи, например, распределение частиц в пространстве или результат игры в кости, определенно, но вам не известно. Квантовое состояние, согласно такому подходу, является всего лишь способом описания неполноты ваших знаний об устройстве мира. В разных физических ситуациях может быть несколько способов определить квантовое состояние в зависимости от известной информации.

Читайте также:

Соблазнительно думать о квантовом состоянии таким образом из-за того, что при измерении параметров физической системы оно становится другим. Проведение измерений меняет это состояние из такого, где каждый возможный исход имеет ненулевую вероятность, до того, где возможен лишь один исход. Это похоже на то, что происходит при игре в кости, когда вы узнаете выпавший результат. Может показаться странным, что мир может измениться просто из-за того, что вы проводите измерения. Но если происходит всего лишь изменение ваших знаний, это больше не удивляет.

Еще одной причиной полагать квантовое состоянием эпистемным является то, что с помощью единственного эксперимента невозможно определить, каким было квантовое состояние до его проведения. Это тоже напоминает игру в кости. Предположим, ваш друг предлагает поиграть и утверждает, что вероятность выпадения шестерки равна всего 10%, тогда как вы настаиваете на 17%. Может ли один единственный эксперимент показать, кто из вас прав? Нет. Дело в том, что выпавший результат сопоставим с обеими оценками вероятности. Нет никакой возможности понять, кто из вас двоих прав в каждом конкретном случае. Согласно эпистемному подходу к квантовой теории, причина, по которой невозможно экспериментально определить большинство квантовых состояний, подобна игре в кости: для каждой физической ситуации есть несколько вероятностей, согласуемых с множественностью квантовых состояний.

Роб Спеккенс, физик из института теоретической физики (Ватерлоо, Онтарио), опубликовал в 2007 году научную работу, где представил «игрушечную теорию», разработанную для имитации квантовой теории. Эта теория не совсем аналогична квантовой, так как упрощена до предельно простой системы. Система имеет всего два варианта каждого из ее параметров: например, «красный» и «синий» для цвета и «верх» и «низ» для положения в пространстве. Но, как и в случае квантовой теории, она включала состояния, которые можно использовать для вычисления вероятности. И предсказания, сделанные с ее помощью, совпадают с предсказаниями квантовой теории.

«Игрушечная теория» Спеккенса была волнующей, поскольку, как и в квантовой теории, ее состояния были «не определяемы» — и эта неопределенность полностью объяснялась тем, что эпистемная теория действительно имеет отношение к реальным физическим ситуациям. Другими словами, «игрушечная теория» была подобна квантовой, и ее состояния были однозначно эпистемными. Так как в случает отказа от эпистемного взгляда неопределенность квантовых состояний не имеет чёткого объяснения, Спеккенс и его коллеги посчитали это достаточным основанием для того, чтобы считать квантовые состояния также эпистемным, но в этом случае «игрушечная теория» должна быть распространена на более сложные системы (т.е. на физические системы, объясняемые квантовой теорией). С тех пор она повлекла за собой ряд исследований, в которых одни физики пытались объяснить с ее помощью все квантовые явления, а другие – показать ее ошибочность.

«Эти предположения непротиворечивы, но это не значит, что они верны».

Таким образом, противники теории поднимают руки выше. Например, один широко обсуждаемый результат 2012 года, опубликованный в Nature Physics, показал, что если один физический эксперимент может быть проведен независимо от другого, тогда не может быть никакой неопределенности по поводу «правильного» квантового состояния, описывающего этот эксперимент. Т.о. все квантовые состояния являются «правильными» и «верными», за исключением тех, которые совершенно «нереальны», а именно: «неверными» являются состояния вроде тех, когда вероятность выпадения шестерки равна нулю.

Другое исследование, опубликованное в Physical Review Letters в 2014 Джоанной Баррет и другими, показало, что модель Спеккенса нельзя применить для системы, в которой каждый параметр имеет три или более степени свободы – например, «красный», «синий» и «зеленый» для цвета, а не просто «красный» и «синий» — без нарушений предсказаний квантовой теории. Сторонники эпистемного подхода предлагают эксперименты, которые могли бы показать разницу между предсказаниями квантовой теории и предсказаниями, сделанными любым эпистемным подходом. Таким образом, все проведенные эксперименты в рамках эпистемного подхода могли бы в какой-то степени согласовываться со стандартной квантовой теорией. В связи с этим нельзя интерпретировать все квантовые состояния как эпистемные, так как квантовых состояний больше, а эпистемные теории покрывают только часть квантовой теории, т.к. они дают результаты, отличные от результатов квантовой.

Исключают ли эти результаты идею о том, что квантовое состояние указывает на характеристики нашего разума? И да, и нет. Аргументы против эпистемного подхода являются математическими теоремами, доказанными по особой структуре, применяемой для физических теорий. Разработанная Спеккенсом как способ объяснения эпистемного подхода, эта структура содержит несколько фундаментальны допущений. Одно из них заключается в том, что мир всегда находится в объективном физическом состоянии, не зависимом от наших знаний о нем, которое может совпасть, а может не совпасть с квантовым состоянием. Другое заключается в том, что физические теории делают предсказания, которые могут быть представлены с использованием стандартной теории вероятности. Эти предположения непротиворечивы, но это не означает, что они верны. Результаты показывают, что в такой системе не может быть результатов, эпистемичных в том же смысле, что и «игрушечная теория» Спеккенса, пока она согласует с квантовой теорией.

Можно ли на этом поставить точку, зависит от вашего взгляда на систему. Здесь мнения расходятся.

Например, Оуэе Марони, физик и философ Оксфордского университета и один из авторов статьи, опубликованной в 2014 в Physical Review Letters, в электронном письме сказал, что «наиболее правдоподобные пси-эпистемические модели» (т.е. те, которые можно приспособить к системе Спеккенса) исключаются. Также Мэтт Лейфер, физик университета Шампани, написавший много работ по эпистемичному подходу к квантовом состояниям, сказал, что вопрос был закрыт еще в 2012 — если вы, конечно, согласны принимать независимость исходных состояний (к чему Лейфер и склоняется).

Спеккенс более бдителен. Он соглашается с тем, что эти результаты сильно ограничивают применение эпистемного подхода к квантовым состояниям. Но он подчеркивает, что эти результаты получены внутри его системы, и как создатель системы он указывает на ее ограничения, такие, как допущения по поводу вероятности. Таким образом, эпистемный подход к квантовым состояниям остается уместным, но если это так, то нам необходимо пересмотреть основные допущения физических теорий, которые многие физики принимают без вопросов.

Тем не менее, очевидно, что в фундаментальных вопросах квантовой теории произошел существенный прогресс. Многие физики склонны называть вопрос о значении квантового состояния просто интерпретационным или, хуже того, философским, но лишь до тех пор, пока им не приходится разрабатывать новый ускоритель частиц или совершенствовать лазер. Называя проблему «философской», мы словно выносим ее за переделы математики и экспериментальной физики.

Но работа над эпистемным подходом показывает неправомерность этого. Спеккенс и его коллеги взяли интерпретацию квантовых состояний и превратили ее в точную гипотезу, которая затем наполнилась математическими и экспериментальными результатами. Это не значит, что сам по себе эпистемный подход (без математики и экспериментов) мертв, это значит, что его защитникам нужно выдвигать новые гипотезы. И это бесспорный прогресс – как для ученых, так и для философов.

Джеймс Оуэн Уэзералл — профессор логики и философии науки университета Ирвин, Калифорния. Его последняя книга «Странная физика пустоты» рассматривает историю изучения структуры пустого пространства в физике с 17 века до наших дней.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Квантовая теория поля
Quantum field theory

Квантовая теория поля (КТП) – теория релятивистских квантовых явлений, описывающая элементарные частицы, их взаимодействия и взаимопревращения на основе фундаментального и универсального понятия квантованного физического поля. КТП – наиболее фундаментальная физическая теория. Квантовая механика является частным случаем КТП при скоростях, много меньших скорости света. Классическая теория поля следует из КТП, если постоянную Планка устремить к нулю.
В основе КТП лежит представление о том, что все элементарные частицы являются квантами соответствующих полей. Понятие квантового поля возникло в результате развития представлений о классическом поле и частицах и синтеза этих представлений в рамках квантовой теории. С одной стороны квантовые принципы привели к пересмотру классических взглядов на поле как на непрерывно распределённый в пространстве объект. Возникло представление о квантах поля. С другой стороны частице в квантовой механике ставится в соответствие волновая функция ψ(x,t), имеющая смысл амплитуды волны, причем квадрат модуля этой амплитуды, т.е. величина | ψ| 2 даёт вероятность обнаружить частицу в той точке пространства-времени, которая имеет координаты x, t. В результате с каждой материальной частицей оказалось связано новое поле – поле амплитуд вероятности. Таким образом, на смену полям и частицам – принципиально разным объектам в классической физике – пришли единые физические объекты – квантовые поля в 4-х мерном пространстве-времени, по одному для каждого сорта частиц. Элементарное взаимодействие при этом рассматривается как взаимодействие полей в одной точке или мгновенное превращение в этой точке одних частиц в другие. Квантовое поле оказалось наиболее фундаментальной и универсальной формой материи, лежащей в основе всех её проявлений.

На основе такого подхода рассеяние двух электронов, испытавших электромагнитное взаимодействие, можно описать следующим образом (см. рисунок). Вначале были два свободных (невзаимодействующих) кванта электронного поля (два электрона), которые двигались навстречу друг другу. В точке 1 один из электронов испустил квант электромагнитного поля (фотон). В точке 2 этот квант электромагнитного поля был поглощён другим электроном. После этого электроны удалялись, не взаимодействуя. В принципе аппарат КТП позволяет рассчитывать вероятности переходов от исходной совокупности частиц к заданной совокупности конечных частиц под влиянием взаимодействия между ними.
В КТП наиболее фундаментальными (элементарными) полями в настоящее время являются поля, связанные с бесструктурными фундаментальными частицами со спином 1/2, - кварками и лептонами, и поля, связанные с квантами-переносчиками четырёх фундаментальных взаимодействий, т.е. фотоном, промежуточными бозонами, глюонами (имеющими спин 1) и гравитоном (спин 2), которые называют фундаментальными (или калибровочными) бозонами. Несмотря на то, что фундаментальные взаимодействия и соответствующие им калибровочные поля имеют некие общие свойства, в КТП эти взаимодействия представлены в рамках отдельных полевых теорий: квантовой электродинамики (КЭД), электрослабой теории или модели (ЭСМ), квантовой хромодинамики (КХД), а квантовой теории гравитационного поля пока не существует. Так КЭД – это квантовая теория электромагнитного поля и электронно-позитронного полей и их взаимодействий, а также электромагнитных взаимодействий других заряженных лептонов. КХД – квантовая теория глюонных и кварковых полей и их взаимодействий, обусловленных наличием у них цветовых зарядов.
Центральной проблемой КТП является проблема создания единой теории, объединяющей все квантовые поля.

Описывает взаимодействие элементарных частиц на основе универсального понятия квантованного физического поля. На основе данного раздела физики сформировалась классическая теория поля, которая сегодня известна как постоянная Планка.

Замечание 1

Основой изучаемой дисциплины стало представление о том, что абсолютно все элементарные частицы стали квантами соответствующих полей. Понятие квантового поля возникло на основе формирования представлений о традиционном поле, частицах, их синтезе, а также заключений в рамках квантовой теории.

Квантовая теория поля выступает в качестве теории, где есть бесконечное число степеней свободы. Их еще называют физическими полями. Острой проблемой квантовой теории стало создание единой теории, которая объединяла бы все квантовые поля. В Теории в настоящее время самыми фундаментальными полями являются поля, которые связаны с бесструктурными фундаментальными частицами. Этими микрочастицами выступают кварки и лептоны, а также поля, связанные с квантами-переносчиками четырёх фундаментальных взаимодействий. Исследования проводятся с промежуточными бозонами, глюонами и фотонами.

Частицы и поля квантовой теории

Более ста лет назад зародились основные понятия атомной физики, которые со временем получили продолжение в квантовой физике, сформулировав теорию поля. Различают двойственность классической теории. Она сформировалась в начале 20 века. Тогда частицы представлялись как маленькие комочки энергии, сформировавшие материю. Все они двигались согласно известной законам классической механики, о которых ранее подробно изложил в своих работах британский ученый Исаак Ньютон. Затем приложили руку к дальнейшим исследованиям Фарадей и Максвелл. Он сформировали законы динамики электромагнитного поля.

В это же время Планк впервые вводит в физическую науку понятие о порции, кванте, излучении для объяснения закономерностей теплового излучения. Затем физик Альберт Эйнштейн обобщил эту идею Планка о дискретности излучения. Он предположил, что такая дискретность не связывается с определенным механизмом взаимодействия излучения и веществом, а присуща на внутреннем уровне самому электромагнитному излучению. Электромагнитное излучение – это и есть кванты. Подобные теории вскоре получили экспериментальное подтверждение. На их основе были объяснены закономерности фотоэффекта.

Новые открытия и теории

Примерно 50 лет назад ряд физиков нового поколения попытались использовать аналогичный подход в описании гравитационного взаимодействия. Они не только подробно описали все процесса, происходящие в условиях планеты, но и устремили свои взгляды на проблемы возникновения Вселенной, сформулировав теорию Большого взрыва.

Квантовая теория поля стала обобщением квантовой механики. Квантовая механика, наконец, стала ключом к пониманию важнейшей проблемы атома, в том числе открыла двери перед исследованиями другими ученых в постижении загадок микромира.

Квантовая механика позволяет описывать движение электронов, протонов и иных частиц, однако не их порождение или уничтожение. Оказалось, что ее применение верно только для описания систем, в которых остается неизменно число частиц. Была доказана наиболее интересная в электродинамике задача испускания и поглощения электромагнитных волн заряженными частицами. Это соответствует порождению или уничтожению фотонов. Теория оказалась вне рамок компетенции ее исследования.

На основе первоначальных знаний стали приниматься в разработку иные теории. Так в Японии выдвинули квантовую электродинамику как наиболее перспективное и точное направление научной деятельности последних лет. В дальнейшем развитие получило направление хромодинамики и квантовая теория электрослабых взаимодействий.

Квантовая теория поля рассматривает в качестве основных следующие теории:

  • свободные поля и корпускулярно-волновой дуализм;
  • взаимодействие полей;
  • теорию возмущений;
  • расходимости и перенормировки;
  • функционального интеграла.

Квантованное свободное поле имеет запас свободной энергии и имеет возможность отдавать ее определенными частями. При уменьшении энергии поля на автоматически означает исчезновение одного фотона другой частоты. Происходит переход поля в иное состояние, при этом происходит уменьшение на одну единицу фотона. После таких последовательных переходов в итоге образуется состояние, где число фотонов равно нулю. Отдача энергии полем становится невозможной.

Поле может существовать в состоянии вакуума. Подобная теория не совсем понятна, но является полностью обоснованной с физической точки зрения. Электромагнитное поле в вакуумном состоянии не может быть поставщиком энергии, однако вакуум вообще никак не может проявить себя.

Определение 1

Физический вакуум - это состояние с необходимыми и значимыми свойствами, проявляющимися в реальных процессах.

Такое утверждение верно для других частиц. И его можно представить как низшее энергетическое положение этих частиц и их полей. Вакуумным при рассмотрении взаимодействующих полей называют низшее энергетическое состояние всей системы данных полей.

Проблемы квантовой теории поля

В квантовой электродинамике исследователи достигли немало успехов, однако не всегда удается понять, как они были показаны. Все эти успехи нуждаются в дальнейшем объяснении. Теория сильных взаимодействий стала формироваться развиваться по аналогии квантовой электродинамики. Тогда роль переносчиков взаимодействия были приписана частицам, что обладают массой покоя. Также существует проблема перенормируемости.

Она не могла рассматриваться как непротиворечивое построение, поскольку в ней появляются бесконечно огромные значения для определенных физических величин и отсутствует понимание того, что же с ними делать. Идея изменения нормировок не только объясняет исследуемые эффекты, но и придает всей теории черты логической замкнутости, устранив из нее расходимости. Ученые сталкиваются с определенными проблемами на различных стадиях исследований. Им будет посвящено немало времени на устранение, поскольку точных показателей до сих пор в квантовой теории поля не существует.

Тому, кто интересуется этим вопросом, не советую обращаться к материалу Википедии.
Что хорошего мы там прочитаем? Википедия отмечает что «квантовая теория поля» - «это раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы - квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений».

1. Квантовая теория поля: Первый обман. Изучение – это, как ни говори, получение и усвоение информации, которая уже собрана другими учеными. Возможно, имелось в виду «исследование»?

2. Квантовая теория поля: Второй обман. Бесконечно большого числа степеней свободы ни в одном теоретическом примере этой теории нет и не может быть. Переход от конечного числа степеней свободы к бесконечному должен сопровождаться не только количественными, но и качественными примерами. Ученые часто осуществляют обобщения следующего вида: «Рассмотрим N=2, после чего с легкостью обобщим для N = бесконечность». При этом, как правило, если автор решил (или почти решил) задачу для N=2, ему кажется, что он совершил самое трудное.

3. Квантовая теория поля: Третий обман. «Квантовое поле» и «квантованное поле» – это две большие разницы. Как между прекрасной женщиной и приукрашенной женщиной.

4. Квантовая теория поля: Четвертый обман. Насчет превращения микрочастиц. Еще одна теоретическая ошибка.

5. Квантовая теория поля: Пятый обман. Физика элементарных частиц как таковая - не наука, а шаманство.

Читаем далее.
«Квантовая теория поля является единственной экспериментально подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя)».

6. Квантовая теория поля: Шестой обман. Квантовая теория поля не подтверждена экспериментально.

7. Квантовая теория поля: Седьмой обман. Существуют теории, которые в большей степени согласуются с экспериментальными данными, и в их отношении столь же «обоснованно» можно говорить, что они подтверждены экспериментальными данными. Следовательно, квантовая теория поля не является и «единственной» из «подтвержденных» теорий.

8. Квантовая теория поля: Восьмой обман. Квантовая теория поля ничего ровным счетом не способна предсказать. Ни один реальный результат эксперимента не может быть даже «подтвержден» «пост фактум» этой теорией, не говоря уже о том, чтобы что-то можно было бы априорно рассчитать с ее помощью. Современная теоретическая физика на настоящем этапе все «предсказания» осуществляет на основании известных таблиц, спектров и тому подобных фактических материалов, которые пока еще никак не «сшиты» ни одной из официально принятых и признанных теорий.

9. Квантовая теория поля: Девятый обман. При энергиях, существенно превышающих энергию покоя, квантовая теория не только ничего не дает, но и постановка задачи при таких энергиях невозможна в современном состоянии физики. Дело в том, что квантовая теория поля, как и неквантовая теория поля, как и любая из ныне принятых теорий, не может ответить на простые вопросы: «Какова максимальная скорость электрона?» , а также на вопрос «Равна ли она максимальной скорости любой иной частицы?»
Теория относительности Эйнштейна утверждает, что предельная скорость любой частицы равна скорости света в вакууме, то есть эта скорость не может быть достигнута. Но в этом случае правомочен вопрос: «А какая скорость МОЖЕТ быть достигнута?»
Ответа нет. Потому что и утверждение Теории относительности не верно, и получено оно из неверных посылок, неверными математическими выкладками на основе ошибочных представлений о допустимости нелинейных преобразований.

Кстати, вообще не читайте Википедии. Никогда. Мой совет вам.

ОТВЕТ ПИРОТЕХНИКУ

В данном конкретном контексте я написал, что ОБМАНОМ ЯВЛЯЕТСЯ ОПИСАНИЕ КВАНТОВОЙ ТЕОРИИ ПОЛЯ В ВИКИПЕДИИ.
Мой вывод по статье: «Не читайте Википедии. Никогда. Мой совет вам».
Каким образом на основе моего отрицания научности некоторых статей в Википедии вы сделали вывод о том, что я «не люблю ученых»?

Я никогда, кстати, не утверждал, что «Квантовая теория поля – обман».
С точностью до наоборот. Квантовая теория поля – это экспериментально обоснованная теория, которая, естественно, не столь бессмысленна, как Специальная или Общая теория относительности.
НО ВСЕ ЖЕ – квантовая теория ОШИБОЧНА ПО ЧАСТИ ПОСТУЛИРОВАНИЯ тех явлений, которые МОГУТ БЫТЬ ВЫВЕДЕНЫ КАК СЛЕДСТВИЯ.

Квантовый (квантованный – точнее и правильнее) характер излучения горячих тел определяется не квантовой природой поля как таковой, а дискретным характером порождения колебательных импульсов, то есть СЧЕТНЫМ ЧИСЛОМ ПЕРЕХОДОВ ЭЛЕКТРОНОВ с одной орбиты на другую – с одной стороны, и ФИКСИРОВАННЫМ ОТЛИЧИЕМ ЭНЕРГИИ разных орбит.
Фиксированное отличие определяется свойствами движений электронов в атомах и молекулах.
Эти свойства должны исследоваться с привлечением математического аппарата замкнутых динамических систем.
Я это проделал.
См. статьи в конце.
Мной показано, что СТАБИЛЬНОСТЬ ОРБИТ ЭЛЕКТРОНОВ можно объяснить из обычной электродинамики с учетом ограниченной скорости электромагнитного поля. Из этих же условий можно теоретически предсказать геометрические размеры атома водорода.
Максимальный внешний диаметр атома водорода определяется как удвоенный радиус, а радиус соответствует такой потенциальной энергии электрона, которая равна кинетической энергии, вычисленной из соотношения E=mc^2/2 (эм-це-квадрат-пополам).

1. Бугров С.В., Жмудь В.А. Моделирование нелинейных движений в динамических задачах физики // Сборник научных трудов НГТУ. Новосибирск. 2009. 1(55). С. 121 – 126.
2. Zhmud V.A., Bugrov S.V. The modeling of the electron movements inside the atom on the base of the non-quantum physics. // Proceedings of the 18th IASTED International Conference “Applied Simulation and Modeling” (ASM 2009). Sept. 7-9, 2009. Palma de Mallorka, Spain. P.17 – 23.
3. Жмудь В.А. Обоснование нерелятивистского неквантового подхода к моделированию движения электрона в атоме водорода // Сборник научных трудов НГТУ. Новосибирск. 2009. 3(57). С. 141 – 156.

Кстати, среди возможных ответов на вопрос «За что Вы так не любите учёных?»

ПОТОМУ ЧТО Я ЛЮБЛЮ НАУКУ.

А кроме шуток: Ученые не должны стремиться к любви или не любви. Они должны стремиться к истине. Тех, кто стремится к истине, я «люблю умом», не зависимо от того, ученые они, или нет. То есть – ОДОБРЯЮ. Люблю сердцем я вовсе не за это. Не за стремление к истине. Эйнштейн стремился к истине, но не всегда, не везде. Как только он предпочел стремиться к доказательству безошибочности своей теории, он забыл напрочь об истине. После этого как ученый он в моих глазах потускнел довольно изрядно. Надо было бы ему задуматься покрепче о газовой природе гравитационных линз, о «почтовой» природе запаздывания информации – мы же не судим по датам прибытия на письмах времени их отправки! Эти две даты всегда не совпадают. Мы не отождествляем их. С какой же тогда стати отождествлять воспринимаемое время, воспринимаемую скорость и прочее с действительными временем, скоростью и прочим?
Насчет того, что я не люблю читателей? Здравствуйте! Я пытаюсь открыть им глаза. Разве это – не любить?
Я люблю даже тех рецензентов, которые возражают. Причем, тех, кто возражает обоснованно, я особо люблю. Тех же, кто стремится не возразить, а просто отрицать, утверждать обратное безо всяких на то оснований, не вчитываясь в мои аргументы – таких мне просто жаль.
«Зачем они пишут примечание к тому, что даже не прочитали?» – думаю я.

В заключение - шутка для моих читателей, которые устали от длинных рассуждений.

КАК НАПИСАТЬ НОБЕЛЕВСКУЮ РЕЧЬ

1. Получите Нобелевскую премию.
2. Оглянитесь вокруг себя. Вы обнаружите множество добровольных бесплатных помощников, которые сочтут за честь написать за вас эту речь.
3. Прочитайте предложенные четыре варианта. От души посмейтесь. Напишите что угодно – это все равно будет лучше любого из этих вариантов, а они, эти варианты, безусловно, лучше того, что вы можете написать, минуя пункт 1 настоящей последовательности.